《分数的基赋性质》说课稿(15篇)
作为一名卓异的教员,总归要编写说课稿,借助说课稿可以提高教学质量,获得精采的教学下场。我们该若何去写说课稿呢?下面是小编为巨匠清理的《分数的基赋性质》说课稿,接待巨匠分享。
《分数的基赋性质》说课稿1
1、说教学理念
1、以学生成长为本,出力强化小我主体意识,同时关注学生进修念头、欢兴奋乐喜爱等激情立场。
2、从学生已有的认知成长水安然舒适常识经验解缆,为学生带给充实从事数学勾当的机缘和充实的操练空间。
3、致力于改变学生的进修编制,关注过程,让学生履历常识的组成过程,感应传染验证、转化,和“用数学学数学”等数学思惟编制。
2、说教材
1、教学资料
《分数的基赋性质》一课是五年级下册第四单元的一个资料。这部门资料是在学生进修了分数的益处、分数与除法的关系、商不变性质等常识的根底长进行教学的,它是往落伍修约分、通分的按照。是以,分数的基赋性质是本单元的教学重点之一。在教学这一常识点时,应寄望增强整数商不变性质的回首回头回忆回头回忆,这样既辅佐学心理解了分数的基赋性质,又沟通了新旧常识的内在联系。
2、学情分化
学生在三年级上学期已初步熟谙了分数,除夜白分数各个部门的名称,会读、写简单的分数,会斗劲分子是1的分数,和同分母分数的巨细。还进修了简单的同分母分数的加、减法。在本学期又进修了因数、倍数等概念,掌控了2、3、5的倍数的特点,为进修本单元常识打下了根底。此外,本单元的常识资料概念较多,斗劲抽象,学生的抽象逻辑思惟在很除夜水平上还需要直不美不美观形象思惟的撑持。在数学教学中,化抽象为具体、直不美不美观,对顺遂睁开教学是十分需要的。
3、教学方针:
(1)透过教学使学心理解和掌控分数的基赋性质,能应用分数的基赋性质,把一个分数化成指定分母(或分子)而巨细不变的分数,再操作这一纪律解决简单的现实问题。
(2)指导学生在介入不美观不美观不雅察看、斗劲、猜想、验证等进修勾当过程中,有前提、有遵循的思虑、切磋问题,培育学生的抽象归纳综合潜力。
(3)渗入初步的辨证唯物主义思惟教育,使学生遭到数学思惟编制的陶冶,培育乐于切磋的进修立场。
教学重点:
理解和掌控分数的基赋性质
教学难点:
进修自立试探,发现和归纳分数基赋性质,和操作它解决响应的问题。
教具学具:
课件,三张一样巨细的长方形纸条、彩笔。
3、说教法
“将课堂还给学生,让课堂焕发生命活力”,为营建学生在教学勾傍边的自力、自立的进修空间,让学生成为课堂的主人,本着这样的指导思惟,和学生的认知纪律,我采纳的教学编制首要有:
1、现实操作法
指导学生亲主出手折一折,涂一涂,比一比,从这些实践勾傍边加深学生对分数基赋性质的理解,促使学生的感性熟谙逐步理性化。
2、直不美不美观演示法
先让学生充实感知,发现纪律,然后斗劲归纳,最后归纳综合出分数的基赋性质,从而使学生的思惟从形象思惟过渡到抽象思惟。
3、启发式教学法
应用常识迁移纪律组织教学,用数学学数学,层层深切,促使学生在专心的思惟中获得新知。
4、说学法
1、学生在进修分数的基赋性质时,指导学生采纳自立发现法、操作体验法,学生在纸条上涂出响应的暗影部门后,必定会对那三个图形进行不美观不美观不雅察看和斗劲,从中有所发现。往后教员透过启发学生应用分数的基赋性质,证实那三个分数巨细相等,在考试考试中发现,在实践中体验,从而加深学生对分数基赋性质的理解。
2、在进修例题的过程中教师先采纳启发法,再采纳学生自学考试考试法,自力自登时进修将分数化成分母不合但巨细不异的分数,并考试考试完成操练题,达到考验自学的方针。
5、说教学过程
(一)、创设情境激趣引新
(二)、新知试探
出手操作、形象感知
不美观不美观不雅察看斗劲、切磋纪律
首尾赐顾帮衬、释疑解惑
(三)、巩固新知
判一判填一填找一找
(四)、扩年夜迟误
1、创设情境,激起欢兴奋乐喜爱,揭露课题。
上课伊始我操作阿凡提为三兄弟分地的故事来激起学生的进修欢兴奋乐喜爱,让学生亲主出手折一折、分一分、比一比,从直不美不美观上让学生感应传染到这几个分数巨细是相等的,而这几个分数的分子和分母都不相等,这其中有甚么纪律呢?继而揭露课题。
(设计意图)好奇是学生的赋性,透过度地故事能快抓住学生的好奇心,使他们在心理上发生悬念,带着疑问火速切入正题。
2、试探新知
(1)、出手操作、形象感知
首先让学生用三张一样巨细的长方形纸条折一折,再涂色暗示出每张纸的1/3,2/6,4/8。不美观不美观不雅察看涂色部门,说说发现了甚么?在学生陈述请示时,说出:涂色部门面积相等,也就声名这三个分数巨细相等。然后透过电脑再进一步证实学生的发现:透过不美观不美观不雅察看,我们发现三个暗影部门巨细相等,声名三个分数巨细相等。
(设计意图)主若是操作学生爱出手和直不美不美观思惟的特点,让学生在出手操作过程中不单仅复习了分数的益处,为下面导入新常识作好迁移,而且激活了课堂空气,营建了精采的进修初步。
(2)、不美观不美观不雅察看斗劲,切磋纪律
首先,在学生折纸的根底上,透太小组构和交流总结出分数的基赋性质,让学心理解“同时乘上或除以”的益处,和为甚么要强调“0除外”这个前提。其次,总结出分数的基赋性质后,要和之前学过的商不变纪律进行斗劲,找出二者间的联系,使学生更好的'理解、应用性质。
(设计意图)这一环节重在培育了学生斗胆交流、措辞表达的潜力,同时学生在陈述请示交流中使问题慢慢坦荡开畅化,事实下场验证了自己的猜想。要充实罢休,让学生畅所欲言。
3、巩固新知
在巩固阶段,我放置了三个不合条理的习题。其中“填一填”是根底操练,但也包内含6/12=()/()的发散题。“判一判”也是对“分数的基赋性质”做进一步的诠释。“说一说”是一种变换了形式的习题,难度不除夜,只可是说法不合,最后还放置了“想想”环节,解决的编制已包含在前面的“听一听”环节中。全数习题设计部门,问题问题闪现编制的多样,吸引了学生的寄望力,激起了学生欢兴奋乐喜爱。同时操练题列举遵守由易到难的原则,层层深切,也有用的培育了学生立异意识息争决问题的潜力。
4、拓展迟误
透过质疑反思、步步深切的交流勾当,学生对分数的基赋性质切磋更深切,理解更完美。此时学生的视野已不尽限于分数的基赋性质,而是扩年夜到研究分数巨细改变的纪律;最后的拓展性发问,使学生思惟发散,联系现实,应用纪律,并自然引出往后的进修资料,激起学生不竭试探新知的欲望。
6、板书设计
分数的基赋性质
分数的分子、分母同时乘以或除以不异的数,
分数的巨细不变。
《分数的基赋性质》说课稿2
1、教材分化
分数的基赋性质是约分和通分的根底,而约分、通分又是分数四则运算的首要根底,是以,理解分数的基赋性质显得尤其首要。而分数与除法的关系和除法中的商不变的纪律与这部门常识慎密联系,是进修这部门内容的根底。
试探分数的基赋性质,关头是让学生在勾傍边自动地不美观不美观不雅察看和发现,在构和交流的根底上归纳纪律。遵循我对教材的熟谙,本课时放置了进修勾当和游戏勾当让学生寻觅相等的分数,使学生初步体验分数的巨细相等关系,为不美观不美观不雅察看、发现分数的基赋性质供给丰硕的进修材料。然后指导学生不美观不美观不雅察看这两组相等的分数,寻觅分子、分母的改变纪律,并睁开充实的交流构和,在此根底上归纳分数的基赋性质。
教学方针:
1、常识方针:履历试探分数的基赋性质的过程,理解分数的基赋性质。能用分数的基赋性质,把一个分数化成指定分母(或分子)而巨细不变的分数。
2、能力方针:培育学生的不美观不美观不雅察看、斗劲、归纳、总结归纳综合能力。
3、激情方针:履历不美观不美观不雅察看、操作和构和等进修勾当,体验数学进修的乐趣。
2、说教法
“将课堂还给学生,让课堂焕发生命活力”,为营建学生在教学勾傍边的自力、自立的'进修空间,让学生成为课堂的主人,本着这样的指导思惟,遵循概念教学的特点,连络教学特点,和学生的认知纪律,我将采纳的教学编制首要有:
1、 直不美不美观演示法
先让学生充实感知,然后斗劲归纳,最后归纳综合出分数的基赋性质,从而使学生的思惟从形象思惟过度到抽象思惟。
2、 现实操作法
指导学生亲自动一动、折一折,画一画,比一比,多这些实践勾傍边加深学生对分数基赋性质的理解,促使学生的感性熟谙逐步理性化。
3、 启发式教学法
应用常识迁移纪律组织教学,层层深切促使学生在积极的思惟
4. 成立以“以学生成长为本”、“以学定教”、“教为学处事”的思惟,是以在教学中,我采纳指导自学、合作试探相连络法,让学会应用分数的基赋性质把一个分数化成分母不合但巨细相等的分数,有用地提高了教学效力。在常识的巩固阶段,我还采纳分层操练法,当然以上这些教法其实不是孤立存在的,本着“一法为主,多法为辅”的思惟,我将多种教法进行优化组合,以达到促进学生进修编制的改变,实现教学方针的方针
3、教学组织形式:
师生互动、合作与试探连络
4、教学过程与设计意图
1、故事引入、激起欢兴奋乐喜爱、揭露课题
以阿凡提讲故事引入,然后小组构和。
2、出手操作,试探新知
①做一做,折一折。拿出三张一样除夜的长方形纸,请分袂平均折成2份、4份、8份。并遵循下图涂色。假定把每张纸都看作“1”,请你把涂色的部门用分数暗示出来。学活跃手操作、陈述请示。
遵循上面的过程,学生能获得一组相等的分数吗?
②教师指导学生归纳小结:斗劲这三个分数的分子和分母,它们各是遵循甚么纪律改变的?分数的分子和分母同时乘上或除以不异的数(0除外),分数的巨细不变,这就是分数的基赋性质。
常识引申,联系旧常识:遵安分数与除法的关系,和整数除法中商不变的性质,你能说说它与分数的基赋性质吗?
设计意图:新常识力争让学生自动试探,逐步获得。借助直不美不美观图组织学生进行一个出手操作勾当,借助直不美不美观图形找出相等的分数,使学生能够直不美不美观感知。充实调动孩子们去出手、动脑,培育学生的操作能力和措辞表达能力。并充实发扬学生的团结协作的精神, 彼此辅佐,每小我都能在鼓舞激励中获得不合的成长。
本次勾当的放置为学生供给了丰硕的进修材料,指导学生联系以往的进修经验,进行进修内容的迁移,自然获得分数巨细的改变纪律,教师在此也进行了适当的重点点拨。在这一环节的进修过程中,教师正视学生的不美观不美观不雅察看、斗劲、归纳归纳综合能力的培育。
3、实践游戏、深化理解、巩固操练:
设计意图:操练设计由易到难,由浅入深,既巩固新知,又成长思惟,其间还自然地渗入思惟道德教育。师生对出数做题,能够创设平易近主协调的进修空气。学生对课堂游戏都很是积极,这时辰,教师理当实时赞誉默示超卓的学生,也要顾及一些落伍生的进修状况,带动落伍生的进修激情。
4、全课总结:这节课你有甚么收成?
《分数的基赋性质》说课稿3
1、说教学理念
1、以学生成长为本,出力强化小我主体意识,同时关注学生进修念头、欢兴奋乐喜爱等激情立场。
2、从学生已有的认知成长水安然舒适常识经验解缆,为学生供给充实从事数学勾当的机缘和充实的操练空间。
3、致力于改变学生的进修编制,关注过程,让学生履历常识的组成过程,感应传染验证、转化,和“用数学学数学”等数学思惟编制。
2、说教材
1、教学内容
《分数的基赋性质》一课是五年级下册第四单元的一个内容。这部门内容是在学生进修了分数的意义、分数与除法的关系、商不变性质等常识的根底长进行教学的,它是往落伍修约分、通分的按照。是以,分数的基赋性质是本单元的教学重点之一。在教学这一常识点时,应寄望增强整数商不变性质的回首回头回忆回头回忆,这样既辅佐学心理解了分数的基赋性质,又沟通了新旧常识的内在联系。
2、学情分化
学生在三年级上学期已初步熟谙了分数,知道分数各个部门的名称,会读、写简单的分数,会斗劲分子是1的分数,和同分母分数的巨细。还进修了简单的同分母分数的加、减法。在本学期又进修了因数、倍数等概念,掌控了2、3、5的倍数的特点,为进修本单元常识打下了根底。此外,本单元的常识内容概念较多,斗劲抽象,学生的抽象逻辑思惟在很除夜水平上还需要直不美不美观形象思惟的撑持。在数学教学中,化抽象为具体、直不美不美观,对顺遂睁开教学是十分需要的。
3、教学方针:
(1)经由过程教学使学心理解和掌控分数的基赋性质,能应用分数的基赋性质,把一个分数化成指定分母(或分子)而巨细不变的'分数,再操作这一纪律解决简单的现实问题。
(2)指导学生在介入不美观不美观不雅察看、斗劲、猜想、验证等进修勾当过程中,有前提、有遵循的思虑、切磋问题,培育学生的抽象归纳综合能力。
(3)渗入初步的辨证唯物主义思惟教育,使学生遭到数学思惟编制的陶冶,培育乐于切磋的进修立场。
教学重点:理解和掌控分数的基赋性质;教学难点:进修自立试探,发现和归纳分数基赋性质,和操作它解决响应的问题。
教具学具:课件,三张一样巨细的长方形纸条、彩笔。
3、说教法
“将课堂还给学生,让课堂焕发生命活力”,为营建学生在教学勾傍边的自力、自立的进修空间,让学生成为课堂的主人,本着这样的指导思惟,和学生的认知纪律,我采纳的教学编制首要有:
1、现实操作法
指导学生亲主出手折一折,涂一涂,比一比,从这些实践勾傍边加深学生对分数基赋性质的理解,促使学生的感性熟谙逐步理性化。
2、直不美不美观演示法
先让学生充实感知,发现纪律,然后斗劲归纳,最后归纳综合出分数的基赋性质,从而使学生的思惟从形象思惟过渡到抽象思惟。
3、启发式教学法
应用常识迁移纪律组织教学,用数学学数学,层层深切,促使学生在积极的思惟中获得新知。
4、说学法
1、学生在进修分数的基赋性质时,指导学生采纳自立发现法、操作体验法,学生在纸条上涂出响应的暗影部门后,必定会对那三个图形进行不美观不美观不雅察看和斗劲,从中有所发现。往后教员经由过程启发学生应用分数的基赋性质,证实那三个分数巨细相等,在考试考试中发现,在实践中体验,从而加深学生对分数基赋性质的理解。
2、在进修例题的过程中教师先采纳启发法,再采纳学生自学考试考试法,自力自登时进修将分数化成分母不合但巨细不异的分数,并考试考试完成操练题,达到考验自学的方针。
5、说教学过程
1、新知铺垫和导入
上课伊始我操作分饼的故事来激起学生的进修欢兴奋乐喜爱,让学生亲主出手折一折、分一分、比一比,从直不美不美观上让学生感应传染到这几个分数巨细是相等的,而这几个分数的分子和分母都不相等,这其中有甚么纪律呢?继而揭露课题。
(设计意图)好奇是学生的赋性,经由过水平地故事能快抓住学生的好奇心,使他们在心理上发生悬念,带着疑问火速切入正题。
2、新知切磋
(1)出手操作、形象感知
首先让学生用三张一样巨细的长方形纸条折一折,再涂色暗示出每张纸的1/2,2/4,4/8。不美观不美观不雅察看涂色部门,说说发现了甚么?在学生陈述请示时,说出:涂色部门面积相等,也就声名这三个分数巨细相等。
然后经由过程电脑再进一步证实学生的发现:经由过程不美观不美观不雅察看,我们发现三个暗影部门巨细相等,声名三个分数巨细相等。
(设计意图)主若是操作学生爱出手和直不美不美观思惟的特点,让学生在出手操作过程中不单复习了分数的意义,为下面导入新常识作好迁移,而且激活了课堂空气,营建了精采的进修初步。
(2)不美观不美观不雅察看斗劲,切磋纪律
首先,在学生折纸的根底上,经由过程小组构和交流总结出分数的基赋性质,让学心理解“同时乘上或除以”的意义,和为甚么要强调“0除外”这个前提。
其次,总结出分数的基赋性质后,要和之前学过的商不变纪律进行对比,找出二者间的联系,使学生更好的理解、应用性质。
(设计意图)这一环节重在培育了学生斗胆交流、措辞表达的能力,同时学生在陈述请示交流中使问题慢慢坦荡开畅化,事实下场验证了自己的猜想。要充实罢休,让学生畅所欲言。
3、新知操练
在巩固阶段,我放置了三个不合条理的习题。其中“新知操练”是对“分数的基赋性质”做进一步的诠释。“新知操作”是导入分饼时的题,难度不除夜,首尾赐顾帮衬,最后还放置了“新知强化”环节,属于开放性题。全数习题设计部门,问题问题闪现编制的多样,吸引了学生的寄望力,激起了学生欢兴奋乐喜爱,培育了学生立异意识息争决问题的能力。
《分数的基赋性质》说课稿4
列位教员,巨匠好!今天我说课的内容是课程尺度尝试教科书数学五年级下册第四单元第三课时“分数的基赋性质”。下面我从设计理念,教材,教法,学法,教学过程五个方面进行说课。
1、说设计理念
1、以学生的成长为本,出力强化小我主体意识,同时关注学生进修念头、欢兴奋乐喜爱等激情立场。
2、从学生已有的认知成长水安然舒适常识经验解缆,为学生供给充实从事数学勾当的机缘和充实的操练空间。
3、致力于改变学生的进修编制,关注过程,让学生履历常识的组成过程,感应传染验证、转化,和“用数学学数学”等数学思惟编制。
2、说教材
1、教学内容:
《分数的基赋性质》一课是五年级下册第四单元的一个内容。这部门内容的进修是在学生进修了分数的意义、分数与除法的关系、商不变性质等常识的根底长进行教学的,它是往落伍修约分、通分的按照。是以,分数的基赋性质是本单元的教学重点之一。教材在教学这一常识点时,应寄望增强整数商不变性质的内在联系,这样既辅佐学心理解了分数的基赋性质,又沟通了新旧常识的内在联系。
2、学情分化:
学生在三年级上学期已初步熟谙了分数,知道分数各个部门的名称,会读、写简单的分数,会斗劲分子是1的分数,和同分母分数的巨细。还进修了简单的同分母分数的加、减法。在本学期又进修了因数、倍数等概念,掌控了2、3、5的倍数的特点,为进修本单元常识打下了根底。此外,本单元的常识内容概念较多,斗劲抽象,学生的抽象逻辑思惟在很除夜水平上还需要直不美不美观形象思惟的撑持。在数学教学中,化抽象为具体、直不美不美观,对顺遂睁开教学是十分需要的。
3、教学方针:
(1)经由过程教学使得学心理解和掌控分数的基赋性质,能应用分数的基赋性质,把一个分数化成指定分母(或分子)而巨细不变的分数,再操作这一纪律解决简单的现实问题。
(2)指导学生在介入不美观不美观不雅察看、斗劲、猜想、验证等进修勾当过程中,有前提、有遵循的思虑、切磋问题,培育学生的抽象归纳综合能力。
(3)渗入初步的辨证唯物主义思惟教育,使学生遭到数学思惟编制的陶冶,培育乐于切磋的进修立场。
4、教学重点:理解和掌控分数的基赋性质。
5、教学难点:进修自立试探,发现和归纳分数的基赋性质,和操作它解决响应的问题。
6、教具学具:课件,三张一样巨细的长方形纸条、彩笔。
3、说教法
“将课堂还给学生,让课堂焕发生命活力”,为营建学生在教学勾傍边的自力、自立的进修空间,让学生成为课堂的主人,本着这样的指导思惟,和学生的认知纪律,我采纳的教学编制首要有:
1、现实操作法
指导学生亲主出手折一折,涂一涂,比一比,从这些实践勾傍边加深学生对分数基赋性质的理解,促使学生的感性熟谙逐步理性化。
2、直不美不美观演示法
先让学生充实感知,发现纪律,然后斗劲归纳,最后归纳综合出分数的基赋性质,从而使学生的思惟从形象思惟过渡到抽象思惟。
3、启发式教学法
应用常识迁移纪律组织教学,用数学学数学,层层深切,促使学生在积极的思惟中获得新知。
4、说学法
1、学生在进修分数的基赋性质时,指导学生采纳自立发现法、操作体验法,学生在纸条上涂出响应的暗影部门后,必定会对那三个图形进行不美观不美观不雅察看和斗劲,从中有所发现。往后教员经由过程启发学生应用分数的基赋性质,证实那三个分数巨细相等,在考试考试中发现,在实践中体验,从而加深学生对分数基赋性质的理解。
2、在进修例题的过程中教师先采纳启发法,再采纳学生自学考试考试法,自力自登时进修将分数化成分母不合但巨细不异的分数,并考试考试完成操练题,达到考验自学的方针。
5、说教学过程
1、复习发问,旧知铺垫
新课最早,我先板书了一个除法算式 1÷2,然后让学生不计较,说出一个除法算式和它的商相等,学生边说我边抽取两个算式板书,好比2÷4,4÷8 ,3÷ 6等。然后让学生说说是遵循甚么想到这些算式的(商不变的纪律),商不变的纪律的内容又是甚么<被除数和除数同时扩除夜或缩小不异的倍数(0除外),商不变>。
第二步,我让学生遵安分数与除法的关系,把这三个算式写成分数形式,遵循三个算式商相等,推导出这三个分数的巨细。也就是1/2=2/4=4/8。此时,指导学生:在除法中有商不变的性质,那么分数中又有甚么纪律呢?今天我们就配合来参议分数傍边的这个问题。这样设计的方针就是让学生经由过程不美观不美观不雅察看算式和分数的特点,培育学生直觉不美观不美观不雅察看能力,激起学生操作旧常识商不变的纪律,根究新常识的欢兴奋乐喜爱,同时也使学生了了要解决的问题。
2、出手操作,初步感知
首先让学生用三张一样巨细的长方形纸条折一折,再涂色暗示出每张纸的.1/2,2/4,4/8。再不美观不美观不雅察看涂色部门,说说发现了甚么?在学生陈述请示时,说解缆现:涂色部门面积相等,也就声名这三个分数巨细相等。然后经由过程电脑再进一步证实学生的发现:把一张纸条平均分成2份,涂其中1份,获得1/2;把一张纸条平均分成4份,涂其中2份,获得2/4;把一张纸条平均分成8份,涂其中4份,获得4/8;经由过程不美观不美观不雅察看,我们发现三个暗影部门巨细相等,声名三个分数巨细相等。这一过程的设置,主若是操作学生爱出手和直不美不美观思惟的特点,让学生在出手操作过程中不单复习了分数的意义,为下面导入新常识作好迁移,而且激活了课堂空气,营建了精采的进修初步。
3、设疑促思,切磋新知
“疑是思之始,学之端”。在教师板书1/2=2/4=4/8后,进一步指导学生不美观不美观不雅察看这三个分数,它们的分子分母都不不异,可是分数的巨细却相等,提出疑问:这里面潜匿着甚么奥秘,有甚么纪律?接着将讲话权充实交给学生,完全开放空间,激起学生思虑,并畅所欲言,说出自己发现的纪律,(好比:将1/2的分子分母同时乘2获得2/4,将2/4的分子分母同时乘2获得4/8,将1/2的分子分母同时乘4获得4/8;将4/8的分子分母同时除以2获得2/4,将2/4的分子分母同时除以2获得1/2,将4/8的分子分母同时除以4获得1/2共6种)。
在学生自立切磋的根底上,逐步完美学生的说法,当令指导学生将发现的纪律总结成一句话:分数的分子分母同时乘或除以不异的数,分数的巨细不变。
假定学生在此说出了0除外更好,假定没有,在此根底上,提出疑问:“同时”暗示甚么意思?这个不异的数是任何数都行吗?为甚么?那么同窗们总结的纪律该若何论说更完全呢?在学生加上“0除外”完全论说后,指出:分数的这种改变纪律就是我们今天进修的“分数的基赋性质”,并借此板书课题“分数的基赋性质”。
这样设计的方针就是培育学生发现问题,自立切磋问题的能力,也培育学生的措辞表达能力,抽象归纳综合能力和初步的逻辑思惟能力。
此外,我还放置了“听一听”,让学生听5句话并剖断对错。
第一句:分数的分子分母同时乘不异的数(0除外),分数的巨细不变。
第二句:分数的分子分母同时除以不异的数(0除外),分数的巨细不变。
第三句:分数的分子分母同时加上不异的数(0除外),分数的巨细不变。
第四句:分数的分子分母同时减去不异的数(0除外),分数的巨细不变。
第五句:分数的分子分母同时乘或除以不异的数(0除外),分数的巨细不变。
除进行“听一听”的操练,还有习题的剖断。这样一次次地加深,强化学生对分数的基赋性质的理解,几回再三锤炼学生,达到对常识的更深切的掌控,也为后面例题的完成奠基厚实的根底。
4、初步操作,深化新知
进修分数的基赋性质,就是为了在糊口中应用它。给你一个分数,能把它化成分母不合而巨细不异的分数吗?借此引出例2。让学生读题,并除夜白做题要求有两个:一是分数巨细不变,二是分母不异。在指导学生完成第一个分数后,第二个分数让学生自力完成在书上,然后全班学生交流自己的过程及功能。可是一个例2不足以让学生达到巩固的方针,所以再次放置了和例2题型完全一样的“做一做”,让学生自力思虑,写在操练本上,并抽两名学生板演,对闪现的问题配合匡正。这样的放置是为了把“分数的基赋性质”实时操练,几回再三操作,对学生巩固新知、操作新知都达到好的下场。
5、多样操练,巩固常识
在初步操作“分数的基赋性质”后,我放置了四个不合条理的习题。其中“填一填”是根底操练,但也包含有6/12=( )/( )的发散题。“判一判”也是对“分数的基赋性质”做进一步的诠释。“说一说”是一种变换了形式的习题,难度不除夜,只不外说法不合,最后还放置了“想想”环节,解决的编制已包含在前面的“听一听”环节中。全数习题设计部门,问题问题闪现编制的多样,吸引了学生的寄望力,激起了学生欢兴奋乐喜爱。同时操练题列举遵守由易到难的原则,层层深切,也有用的培育了学生立异意识息争决问题的能力。
6 、全课小结,清理常识
让学生回首回头回忆回头回忆本节课,说一说自己的收成,培育学生的常识归纳综合能力。同时,教师也在此时进行总结:分数的基赋性质和商不变的性质只是在说法上不合,在素质上是不异的,所谓“万变不离其宗”恰是如斯。经由过程操作“分数的基赋性质”填空,写出许良多多分子分母不合但分数巨细相等的分数,体味“以不变应万变”的数学进修编制。最后奉告学生一个小奥秘,往后还将进修比的基赋性质,它是在“分数的基赋性质”的根底长进修的,这也是“用数学学数学”的进修编制。这样放置会加倍激起学生进修数学的欢兴奋乐喜爱,和切磋数学问题的编制。
最后,我想说,进修无绝顶,在尔后的教学中,我会加倍全力地研究教材、设计教法,力争使每节数学课都能达到理想的教学下场。
《分数的基赋性质》说课稿5
1、教材简析和教材措置
1.教材简析
《分数的基赋性质》是九年义务教育六年制小学数学课本(西师除夜版)第十册第15-16页的内容。在小学数学进修中起着继往开来、举足轻重的浸染,它既与整数除法的商不变性质有着内在的联系,也是后面进一步进修分数的计较、比的基赋性质的根底。分数的基赋性质是一种纪律性常识,分数的分子分母变了,分数的巨细会变吗?分数的分子分母若何改变,分数的巨细不变呢?学生在这类“变”与“不变”中发现纪律。
2.教材措置
之前,教师凡是把《分数的基赋性质》看作一种静态的数学常识,教学时先用几个例子让学生较快地归纳综合出纪律,然后更多地经由过程精心设计的操练巩固操作纪律,着眼于纪律的结论和操作。跟着课程更始的深切,教师们愈来愈正视学生获得常识的过程,但我们也看到这样的现象:问题较碎,步子较小,罢休不够,切磋的过程闪现不够充实。《分数的基赋性质》可不成以有此外教学思绪呢?新的课程尺度提出:“教师应向学生供给充实从事数学勾当的机缘,辅佐他们在自立试探和合作交流的过程中真正理解和掌控根底的数学常识与手艺、数学思惟和编制。遵循这一新的理念,我认为教师可感受学生创设一种除夜问题布景下的试探勾当,使学生在一种动态的试探过程中自己发现分数的基赋性质,从而体验发现真谛的盘曲和欢愉,感应传染数学的思惟编制,体味科学的进修编制。所以,教师的着眼点,不能只是纪律的结论和操作,而应成心识地凸起思惟和编制。
2、讲授课件设计意图
场景一:故事惹人,揭露课题。
有位老爷爷把一块地分给三个儿子。垂老分到了这块地的三分之一,老二分到了这块地的六分之二。老三分到了这块的九分之三。垂老、老二感应传染自己很吃亏,因而三人就除夜吵起来。刚好阿凡提路过,问清争吵的启事后,哈哈的笑了起来,给他们讲了几句话,三兄弟就遏制了争吵。
让学生揭晓自己的定见,教师出示三块巨细一样的纸,经由过程师生折、不美观不美观不雅察看和验证,得出结论:三兄弟分得的一样多。
一上课,先听讲一段故事,学生很是甘愿宁可核准,并会当即被吸引。思虑故事傍边提出的问题,学生自然欢兴奋乐喜爱浓密。经由过程故事设疑,激起了学生根究新知的欲望。
场景二:发现问题,凸起质疑。
既然三兄弟分得的一样多,那么暗示它们分得土地的分数是甚么关系呢?这三个分数甚么变了,甚么没有变?让学生小组构和后答出:这三个分数是相等关系,它们平均分的份数和暗示的份数也就是分数的分子和分母改变了,但分数的巨细不变。
3.引入新课:下面算式有甚么配合的`特点?学生回覆后
它们各是遵循甚么纪律改变的呢?场景三:斗劲归纳,揭露纪律。
1.出示思虑题。
斗劲每组分数的分子和分母:
(1)从左往右看,是遵循甚么纪律改变的?
(2)从右往左看,又是遵循甚么纪律改变的?
让学生带着上面的思虑题,看一看,想想,议一议,再掀开教科书看看书上是若何说的。
2.集体构和,归纳性质。
(1)从左往右看,由1/4到2/8,分子、分母是若何改变的?指导学生回覆出:把1/4的分子、分母都乘以2,就获得2/8。原本把单元“1”平均分成4份,暗示这样的1份,此刻把分的份数和暗示份数都扩除夜2倍,就获得2/8。
(2)3/4是若何改酿成9/12的呢?若何填?学生回覆后填空。
(3)指导口述:3/4的分子、分母都乘以2,获得6/8,分数的巨细不变。
(4)在其它几组分数中,分子、分母的改变纪律若何?几名学生回覆后,要肄业生试着归纳改变纪律:分数的分子和分母都乘以不异的数,分数的巨细不变。
(5)从右往左看,分数的分子和分母又是遵循甚么纪律改变的?经由过水平析斗劲每组分数的分子和分母,得出:分数的分子和分母都乘以不异的数,分数的巨细不变。
(6)对比教科书中的分数基赋性质,让学生说出少了甚么?(少了“零除外”)构和:为甚么性质中要划定“零除外”?
出示的思虑题是学生根究新知、自力思虑的指南,教师环紧扣的发问和指导学生逐步睁开的充实的构和,辅佐学生一步步走向结论。]
3.出示例2:把3/4和15/24化成分母是8而巨细不变的分数。
思虑:要把3/4和15/24化成分母是8而巨细不变的分数,分子若何不变?改变的按照是甚么?
经由过程举例,沟通分数的基赋性质与商不变性质之间的联系。指导学生应用分数与除数的关系,和整数除法中商不变的性质,声名分数的基赋性质。
如:
[有助于学生顺遂地应用分数与除法的关系,和整数除法中商不变性质声名分数的基赋性质,实现新知化归旧知。]
场景四:多层操练,巩固深化。
1.口答。
学生口答后,要求说出是若何想的?
2.剖断对错,并声名出处。
应用反馈片剖断,错的要求声名与分数的基赋性质中哪几个字不合适。
3.不才面()内填上合适的数。
操练设计由易到难,由浅入深,既巩固新知,又成长思惟,其间还自然地渗入思惟道德教育。师生对出数做题,能够创设平易近主协调的进修空气。经由过程举例,还渗入了函数思惟。
《分数的基赋性质》说课稿6
列位教员,同窗:
巨匠上午好!
我说课的内容是:人教版小学数学课标教材五年级下册75页—76页《分数基赋性质》。下面我就从教材分化、学情分化、教学方针、教法学法及教学过程五个方面来谈一下教学过程设计及设计意图。
1、 教材分化
本节的内容属于概念教学。《分数基赋性质》在小学数学进修中起着继往开来、举足轻重的浸染,它既与整数除法的商不变性质有着内在的联系,也是后面进一步进修分数的计较、比的基赋性质的根底,仍是约分、通分的按照。
2、 学情分化
学生已清楚理解分数的意义,了了分数与除法的关系,商不变性质等常识,这些都为本节课进修做了常识上的铺垫。分数的基赋性质是一种纪律性常识,分数的分子、分母变了,分数的巨细却没变。学生在这类“变”与“不变”中发现纪律,掌控新常识。
3、 教学方针
综合分化课程尺度要求及学生现实,我必定本节教学方针以下:
1.理解和掌控分数的基赋性质,并会应用分数的基赋性质把不合的分数化成分母(或分子)不异而巨细不变的分数。
2.初步养成不美观不美观不雅察看、斗劲、抽象归纳综合的逻辑思惟能力,而且在自立切磋中切确熟谙和理解变与不变的辩证关系。
3.遭到数学思惟的陶冶,养成乐于切磋的进修立场。
教学重点:理解掌控分数的基赋性质,它是约分、通分的按照。
教学难点:让学生自立试探、发现和归纳分数的基赋性质,和操作它解决相关的'问题。
4、 教法学法
遵循本节课的教学方针,考虑到学生已有的常识、糊口经验和认知特点,连络了教材内容,本一课我首要采纳猜想验证与试探发现的教学模式。在分数的基赋性质过程中,采纳学活跃手操作、小组构和、合作切磋等编制,指导学生进行斗劲、不美观不美观不雅察看、分化。经由过程了不美观不美观不雅察看、斗劲,提出问题并解决问题来进行自立试探与合作交流,充实阐扬学生主体介入浸染,激起学生进修欢兴奋乐喜爱,同时让学生获得成功体验。
5、 教学过程
本一节课的教学过程我分五个部门进行
第一部门:故事设疑,揭露课题。以唐僧师徒分饼的故事创设问
题情境,揭露本节课要研究的问题。
第二部门:组织构和,出手操作。主若是组织学活跃手进行折、画、标等勾当,初步理解分数基赋性质。
第三部门:合作切磋,发现纪律。首要的是学生找出纪律,并操作纪律解决问题。
第四部门:多层操练,巩固深化。主若是巩固所学常识并进行拓展提高。
第五部门:梳理常识,反思小结。主若是总结全课。
其中,第三部门“合作切磋,发现纪律”可以细化成为三个环节:
环节一:出手操作,进行斗劲
这一环节是在第二部门的根底长进行的,我给每组学生三张巨细一样的长条纸,让学生用分数暗时憧色部门,并斗劲巨细。此环节的设计主若是培育学生的斗劲能力。
环节二:闪现问题,指导不美观不美观不雅察看
这一环节主若是闪现给学生这样的一个问题,“第一环节中的分数的分子、分母都纷歧样,为甚么巨细相等”,指导学生从左到右、从右到左两方面去不美观不美观不雅察看,此环节的设计主若是培育学生的不美观不美观不雅察看能力。
环节三:交流陈述请示,得出纪律
这一环节主若是学生陈述请示交流,得出结论。
假定学生没有归纳综合出“0除外”就设计两组操练,分子、分母同乘或除以0,完美结论;假定归纳综合出来了,再追加一个问题“为甚么强调0除外”,巩凝聚论。事实下场推导出分数的基赋性质----分数的分子和分母同时乘或除以不异的数(0除外),分数的巨细不变。此环节的设计主若是培育学生的抽象归纳综合能力。
理当强调的是,不管学生说的何等好,教师最后的总结和确认是不成缺傲幽。
以上是我对《分数基赋性质》一节的教学设计意图,有不妥的处所,请列位攻讦指导。
《分数的基赋性质》说课稿7
列位教员:
下战书好!我今天说课的内容是北师除夜版小学数学第九册《分数基赋性质》首先,对教材进行分化。
1、教材分化
《分数基赋性质》是北师除夜版小学数学第九册内容。是在三年级下册已体验了分数发生的过程,熟谙了整体“1”,初步理解了分数的意义,能认、读、写简单的分数,会简单的同分母分数加减法的根底上,进修真假分数,分数基赋性质,约分通分、比巨细等常识,为后续进修分数与小数互化、分数乘除法四则同化运算打好根底。
2、学情分化
学生已知道了真假分数,掌控了分数与除数的关系及商不变性质,再来进修分数基赋性质。分数的基赋性质是一种纪律性常识,分数的分子分母变了,分数的巨细却不变。学生在这类“变”与“不变”中发现纪律,掌控新常识。
遵循教材分化和学生气象,拟定以下教学方针
3、教学方针
1.常识方针:履历试探分数基赋性质的过程,理解并掌控分数的基赋性质,能应用分数的基赋性质把一个分数化成指定分母(或分子)而巨细不变的分数。
2.能力方针:培育学生不美观不美观不雅察看、斗劲、抽象、归纳综合等初步的逻辑思惟能力,而且能够切确熟谙和理解变与不变的辨证关系。
3.激情方针:履历不美观不美观不雅察看、操作和构和等数学进修勾当使学生进一步体验数学进修的乐趣。经由过程学生的成功体验,培育学生酷好数学的激情。
按照教学方针,必定教学重难点
4、教学重难点
能应用分数的基赋性质把一个分数化成指定分母(或分子)而巨细不变的'分数
理解分数基赋性质的寄义,掌控分数基赋性质的推导过程。
5、教学编制
遵循本节课的教学内容和教学方针采纳教学法,小组合作进修。
6、教具学具预备
预备巨细相等的圆形纸片,水彩笔等。
7、教学过程:分六个环节
(一)故事设疑,揭露课题。我将以唐僧师徒分饼的故事创设问题气象。八戒吃第一块饼的14,沙僧人吃第二块饼的28,悟空吃第三块饼的416,他们谁吃的多呢?以此引入新课,激起学生思虑的欢兴奋乐喜爱,积极介入到课堂教学中来。并在这个环节设计学活跃手折、画、标等勾当,折出14,28,416,用彩笔在折的圆上涂出14,28,416,再用铅笔标出分数。在出手做的过程中初步理解分数基赋性质。
(二)合作试探,寻觅纪律。请同窗们不美观不美观不雅察看14,28,416 ; 3|4,68,1216这两组分数,分子分母有甚么改变,分数又有甚么改变?组织构和交流陈述请示。假定没有归纳综合出“把0除外”就设计一组操练:分子分母同乘0,完美结论;假定归纳综合出来了,就顺势进行验证。推导出分数基赋性质-----分数的分子分母都乘或除以不异的数(0除外),分数的巨细不变。
(三)巩固操练。
操练题的设计有简单到复杂,例:分数的分子乘5,要使分数的巨细不变,分母 ( );23=()18621=2()等这样的题,进行操练。
(四)梳理常识,沟通联系。
小结分数基赋性质,请同窗们回忆“商不变性质”。------在除法中,被除数和除数同时扩除夜(或缩小)不异的倍数(零除外),商不变。
然后斗劲这两个性质的联系。这样设计主若是为了共建常识之间的联系,有助于学生矫捷迁移操作,触类旁通。
(五)多层操练,巩固深化。
我将设计从巩固到思惟拓展三个条理的操练。
1.
2. (1)把5/6和1/4化为分母为12而巨细不变的分数。
(2)把2/3和3/4化为分子为6而巨细不变的分数。
3.考考你:1/4的分子加上3,要使分数的巨细不变,分母应加上( )。
(六)全课小结
此刻让我们看板书,回忆这节课学到了甚么常识,比上眼睛想想,感应传染把内容记下了,就微笑一下,是不是是感应传染进修是件欢愉的是呢?
《分数的基赋性质》说课稿8
今天我说课的内容是《分数的基赋性质》。下面我将从“说教学理念、说教材、说教法、说学法、说教学法度楷模、说板书设计”六个方面来授课。
1、本课的教学理念有:
1、以学生成长为本,出力强化主体意识。
2、从学生已有的认知成长水安然舒适常识经验解缆,为学生供给充实从事数学勾当的机缘,变“学数学”为“做数学”。
3、致力于改变学生的进修编制,关注过程,让学生履历常识的组成过程,感应传染验证、转化等数学思惟编制。
2、说教材
《分数的基赋性质》一课是义务教材六年制数学第十册第四单元的一个内容。这部内容的进修是在学生进修了分数的意义、分数与除法的关系、商不变性质等常识的根底长进行教学的。它是进一步进修约分、通分的根底。
遵循教材内容和学生的熟谙知纪律,将本课的教学方针拟定以下:
1、常识与手艺:理解和掌控分数的基赋性质,知道分数基赋性质与整数除法中商不变性质的关系。能应用分数的基赋性质把一个分数化成分母不异而巨细相等的分数;培育学生不美观不美观不雅察看、斗劲及出手实践的能力,进一步成长学生的思惟。
2、激情、立场:激起学生积极自动的激情状况,养成寄望聆听的习惯。
本课的教学重点和难点:理解和掌控分数的基赋性质,会应用分数的基赋性质。
3、说教法
成立以“以学生成长为本”、“以学定教”、“教为学处事”的思惟,是以在教学中,我采纳指导自学、合作试探相连络法,让学会应用分数的基赋性质把一个分数化成分母不合但巨细相等的分数,有用地提高了教学效力。在常识的巩固阶段,我还采纳组织操练法,当然以上这些教法其实不是孤立存在的,本着“一法为主,多法为辅”的思惟,我将多种教法进行优化组合,以达到促进学生进修编制的改变,实现教学方针的方针。
4、说学法
1、学生在应用分数的基赋性质时,指导学生采纳自立发现法、操作体验法,学生在折纸上画出响应的暗影部门后,必定会对那三个图形进行不美观不美观不雅察看和斗劲,从中有所发现。往后教员经由过程启发学生应用分数的基赋性质,证实那三个分数巨细相等,让考试考试中发现,在实践中体验。从而加深学生对分数基赋性质的理解。
2、在进修例题的过程中教师先采纳启发法,再采纳自自学考试考试法,自力自登时进修将分数化成分母不合但巨细不异的分数,并考试考试完成做一做,达到考验自学的方针。
5、说教学法度楷模
按照新的教学理念及学生的认知特点,将本课的教学模式拟定为:
总之,进修无绝顶,在尔后的'教学中,我会加倍全力地研究教材、设计教法,力争使每节数学课都能达到理想的教学下场。
《分数的基赋性质》反思
本节我想连络我校申报的市级课题《创设数学问题情境激起学生进修欢兴奋乐喜爱》和本人负责的市级课题《汇集气象下促进自立进修的教学设计的研究》来谈谈这节课的教学设想,和连络本节课的教学气象谈几点反思。
试探性问题的设计研究我认为有两个方面,一是教师对问题的精心设计,一是培育学生发问题的能力,教师以合作者、指导者的身份与学生一路试探,履历常识的获得过程,从而达到切磋的方针,针对这点熟谙,这节课在我们黉舍课题组成员的集体备课下,作了这样的设计。这节课主若是,让学生能够从中感应传染到进修的乐趣,精心设计问题,让学生自动根究常识,成长思惟。
1、情境的创设:“爱因斯坦说:“欢兴奋乐喜爱是最好的教员。”新课标倡导要关于创设情境,小学生生成具有好奇好胜的心理特点,而这些特点经常是学生对数学发生欢兴奋乐喜爱的导前方。经由过程僧人分饼,创设问题作为引子贯串全课。操作课件中活跃的动画,创设一种协调愉悦的空气,激起学生的进修欢兴奋乐喜爱,这点在这节课中我小我感应传染达到这个方针。
2、切磋勾当与数学逻辑思惟畴昔我们常为学生设计不异的进修编制并要肄业生遵循教师设计的流程睁开进修。好比这节课的验证猜想中一原本我是设计了让学生按折、画、剪、比的法度楷模一步一步来指导学生操作,这样的设计看上去会很强烈热闹,其实学生的操作仍然是被教师牵着鼻子走。后来,为了给学生创设个性化的进修空间,我从头设计:“课桌上的信封里放着一些材料,你可以遵循自己的需要选择合适的材料来验证自己的猜想,假定你感应传染不需要材料,当然也是可以的。”这样的设计能够给以学生必定的切磋空间,也增添也勾当的趣味性和挑战性。可是在现实教学过程中,因为本人教学能力不够谙练,学生首要,默示出来的其实不像我所想像的那般,但起码可以算已经是对传统的一种斗胆的打破吧。
在教学分数的基赋性质的感知、理解、晋升、归纳、归纳综合方面,我正视对学生数学思惟的表达、辨析、质疑的操练,尽可能不给学生的数学思惟加上框框,让学生睁开思惟,斗胆思虑,学生也提出了良多有价值的问题,如:这不异的数能不能搜罗小数,假定分数的分子和分母同时乘上或除以一个小数,那所得的数仍是不是是分数呢?为甚么要零除外?巨细不变能不能说成功能不变呢?等等一系列有价值的问题,并正视指导学生采纳举例声名的编制来解决问题。我想这可能也是我这节课斗劲有收成的一个环节了。能真正地闪现自立开放,改变学生的进修编制。
3、小组合作交流我们班因为在睁开课题研究之前,很少可以说几近没有合作的习惯。而这学期的小组合作的操练方面也做得不够,只能说是交流多于合作,所以在教学过程中闪现了一些我猜想不到的气象。在本节课的设计中有两处合作交流:一个是在验证猜想时合作,因为对小组的要求斗劲复杂,所以我应用了多媒体优势将小组合作要求打在屏幕上,这样学生就有了合作的标的方针,而且能对合作的下场加以对比,提高合作的有用性。此外一个是在发现纪律时合作切磋,交流沟通。这时辰因为本班学生的现实,学生根底上处于一种交流的状况,不能说是合作了。有待尔后对这个问题进一步全力。
4、有用地措置课堂生成成本当教师小我的设计意图与学生的现实的现实不相合适,而学生默示出来的步履或措辞又是有价值的,这时辰教师该若何措置,我认为这就是对课堂生成成本的掌控问题了。此外一个课堂生成点在其中有一个学生应用了商不变的性质来注释了1/4=2/8=4/16的启事,我却忘了将本节课的一个培育学生迁移类推能力的常识点漏失踪踪了,那就是商不变的性质与分数的基赋性质有甚么联系与分辩?这是一个很具有切磋交流价值的问题。可惜我在预设与生成的掌控方面做得斗劲欠缺,透露出的问题也恰是尔后必需要全力去进修的处所。
5、操练的设计为了有用地避免学生在课堂教学后期发生寄望力分手,较好的调动学生的进修积极性。在操练设计方面,尽可能给古板的操练赋予丰硕多彩的形式,一方面可以集中学生的寄望力,此外一方面也能够放松学生的神采,让他们在轻松兴奋的空气里进修常识,本案例中设计了:①有切磋竣事后的分说长短,②有新课中的考试考试性操练,③有游戏勾当。较好地把自力思虑与合作交流连络起来,学生学得轻松、愉悦。但在进修新知的过程中若何与操练有用地通顺贯通在一路,这也是一个很值得我小我反思的处所
反思教学的首要过程,感应传染在让学生用各类编制验证结论的切确性的时辰,拓展得不够,要铺开手让学生寻觅多种道路去验证,而不能局限于教员供给的几种编制。因为数学教学其实不是要就教师教给学生问题的谜底,而是教给学生思惟的编制。
《分数的基赋性质》教学设计
1、教学方针
1、履历试探分数的基赋性质的过程,理解分数的基赋性质。
2、能应用分数的基赋性质,把一个分数化成指定分母(或分子)而巨细不变的分数。
3、履历不美观不美观不雅察看、操作和构和等进修勾当,体验数学进修的乐趣。
2、教材分化
分数的基赋性质是约分和通分的根底,而约分、通分又是分数四则计较首要根底,是以,理解分数巨细不变纪律显得尤其首要。而分数与除法的关系和除法中商不变的纪律与这部门常识慎密联系,是进修这部门内容的根底。试探分数巨细不变的纪律,关头是让学生在勾傍边自动地不美观不美观不雅察看和发现,在构和交流的根底上归纳纪律。
教学重点:理解掌控分数的基赋性质。
教学难点:归纳性质
教学关头:操作分数意义理解性质
教学编制:直不美不美观教学法,故工作境鼓舞激励法
3、教学设想
(一)、创设故工作境,激起学生进修欢兴奋乐喜爱,并揭露课题。
上课伊始我操作阿凡提为三兄弟分地的故事来激起学生的进修欢兴奋乐喜爱,让学生亲主出手折一折、分一分、比一比,从直不美不美观上让学生感应传染到这几个分数巨细是相等的。而这几个分数的分子和分母都不相等,可分数却相等,这其中有甚么纪律呢,从而来揭露课题。
(二)、操作学具,小组合作切磋纪律。
当激倡议学生的好奇心时,让学生四人小组合作操作手中的学具,连络分数的意义来切磋其中的纪律。在找到纪律后让学生想想,遵安分数与除法的关系,和整数除法中商不变的纪律让学生再说说分数的基赋性质,来加深学生对分数的基赋性质的理解。在学生已理解了分数的基赋性质后,教师又让学生回到故事中去,让学生试想假定还有一只小山公,它想要四块,猴王该若何分呢?既达到了操练的方针,又首尾赐顾帮衬,调动学生的积极性。
(三)、设计有条理的操练,以达到巩固新知的方针。
4、教学设计
(一)创设情境,激发学生介入欢兴奋乐喜爱
1、猴王变戏法(学生摹拟复习):
除法度子变形
分数与除法变形
2、教师出示三只可爱的小猴图片,奖励听故事:
有一天,猴王做了三块巨细一样的饼分给小猴们吃,它先把第一块饼平均切成两块,分给第一只小猴一块,第二只小猴见到说:“太小了,我要两块。”猴王就把第二块饼平均切成四块,分给第二只小猴两块。第三只小猴更贪,它抢着说:“我要三块,我要三块。”因而,猴王又把第三块饼平均切6块,分给第三只小猴三块。
同窗们,你知道哪只山公分得的多吗?(哪只山公分得的多?让学生揭晓自己的定见)
3、教师出示三块巨细一样的饼,经由过程师生分饼,不美观不美观不雅察看验收后得出结论:三只山公分得的饼一样多。聪明的猴王是用甚么编制来知足小山公们的要求,又分得那么公允的呢?同窗们想知道有甚么纪律吗?
(二)切磋新知
1、出手操作、形象感知
请同窗们拿出三张不异外形一样除夜的纸,把每张纸都看作一个整体。出手折出平均分的份数2份、4份、6份,动笔把其中的1份、2份、3份画上暗影,再把暗影部门剪下来,将剪下的暗影部门堆叠,比一比记实下结论。
2、不美观不美观不雅察看斗劲、切磋纪律
(1)经由过程出手操作,谁能说一说图中暗影部门用分数暗示各是几分之几?
(2)你认为它们谁除夜?请到揭示台上一边演示一边讲一讲。
(3)既然这三个分数相等,那么我们可以用甚么符号把它们毗连起来?
(4)这三个分数的分子、分母都不不异,为甚么分数的巨细却相等的?你们能找出它们的改变纪律吗?请同窗们四酬报一组,构和这两个问题。
要求:有序不美观不美观不雅察看当真交流
(5)学生陈述请示构和气象。
(6)启发点拨。
A.经由过程从左到右的不美观不美观不雅察看、斗劲、分化,你发现了甚么?
B.分数的分子、分母都乘以或除以不异的数,分数的巨细不变。这里“不异的数”是不是是任何的数都可以呢?请举例声名。板书:(零除外)
C.你认为这句话中哪些词语斗劲首要?(都、不异的数、零除外)
(7)把和化成分母是12而巨细不变的分数。
A.思虑:要把和化成分母是12而巨细不变的分数,分子若何变?改变的按照是甚么?
B.让学生构和后自力解答。
(8)构和:猴王应用甚么纪律来分饼的?假定小山公要4块,猴王若何分才公允呢?
(9)质疑。让学生看看课本和板书,回首回头回忆回头回忆适才进修的过程,提出疑问和不雅概念,师质答疑。
(三)随堂操练
1.P109.1.
2.剖断对错,并声名出处。
3、
(四)小结
同窗们在这节课的进修中默示得很超卓,说一说你有甚么收成或体味?
5、让学生拿出课前发的分数纸,要肄业生看清手中的分数与1/2相等的,报出本成分数后离场,与2/3相等的再离场与3/4相等的。20xx年10月17日
《分数的基赋性质》说课稿9
1、教学内容的声名
《分数的基赋性质》一课是青岛版小学数学五年级下册第二单元的一个内容。进修本内容之前,学生已清楚理解分数的意义,了了分数与除法的关系,商不变性质等常识,这些都为本课进修做了常识上的铺垫。本课在小学数学进修中起着继往开来、举足轻重的浸染,它既与整数除法的商不变性质有着内在的联系,也是后面进一步进修约分、通分、分数计较的根底。
教学重点
理解和掌控分数的基赋性质,应用分数的基赋性质解决现实问题。
教学难点
归纳分数基赋性质的过程及应用分数的基赋性质解决现实问题。
2、教学方针的必定
按照新的《数学课程尺度》,为了更好地闪现数学进修对学生在数学思虑、解决问题和激情与立场等方面的要求。遵循本节课的具体内容并连络学生的现实气象,我拟定了以下教学方针:
常识与手艺:理解和掌控分数的基赋性质,知道分数基赋性质与整数除法中商不变性质的关系。能应用分数的基赋性质把一个分数化成分母不异而巨细相等的分数;培育学生不美观不美观不雅察看、斗劲及出手实践的能力,进一步成长学生的思惟。
过程与编制:让学生履历发现问题、切磋问题、解决问题的全过程,在不美观不美观不雅察看、猜想、验证等试探勾傍边,培育学生不美观不美观不雅察看--试探--抽象--归纳综合的能力和合情推理能力,体验解决问题策略的多样性,成长学生的实践能力和立异精神,培育学生的利意图识、问题意识及合作意识。
激情与立场:使学生在分数基赋性质的切磋勾傍边,获得成功的体验,成立自抉择抉择信念,感应传染到数学的严谨性,及渗入事物是彼此联系、成长改变的辩证唯物主义不美观不美观概念,体味分数的基赋性质在社会糊口中的浸染。
3、教学编制的选择
教法:成立以“以学生成长为本”、“以学定教”的思惟,为实现教学方针,有用地凸起重点、打破难点,我遵守学生的认知纪律,以建构主义进修理论为指导,在切磋分数的基赋性质过程中,采纳学活跃手操作、小组构和、合作切磋等编制,指导学生进行斗劲、不美观不美观不雅察看、分化,充实应用常识迁移的纪律,在感知的根底上加以抽象、归纳综合,进行归纳清理,采纳迁移教学法、指导发现法组织教学。
学法:有用的数学进修勾当,不能纯挚摹拟与记忆,出手实践、自立试探与合作交流是学生进修数学的首要编制。在进修例题的过程中学生首要采纳自学考试考试法,自力自登时进修将分数化成分母不合但巨细不异的分数,并考试考试完成做一做,达到考验自学的方针。经由过程不美观不美观不雅察看、斗劲、提出问题并解决问题来进行自立试探与合作交流,充实阐扬学生主体介入浸染、激起学生进修欢兴奋乐喜爱,同时让学生获得成功体验。
4、教学媒体的应用
在教学媒体方面,我选择了多种教学媒体综合应用的编制,优化数学的进修过程。正方形纸片,彩笔,直尺等学具预备;经由过程多媒体讲授课件等教具预备,将现代信息手艺的应用通顺贯通到数学课堂中。
5、教学过程的设计
为了周全、切确地指导学生试探发现分数的基赋性质,实现教学方针,我全力抓住学生的思惟成长点组织教学,设计了“创设情境,激起思虑——复习旧知,引出新知——出手实践,初步感知——指导不美观不美观不雅察看,发现纪律——巩固操练,加深理解——课堂小结,使命结尾”六个环节。
(一)创设情境,激起思虑
1、教师操作多媒体课件播放动画,故事引入:上课伊始我操作阿凡提为三兄弟分地的故事来激起学生的进修欢兴奋乐喜爱,让学生亲主出手比一比,从直不美不美观上让学生感应传染到这几个分数巨细多是相等的。而这几个分数的分子和分母都不相等,可分数却相等,这其中有甚么纪律呢?
2、操作信息手艺,创设有趣的故工作境,学生的积极性被调动,纷繁揭晓自己的不合不雅概念。激起学生进修欢兴奋乐喜爱,并揭露课题。
(二)复习旧知,引出新知
1、要解决的`问题
(1)再现学生的原有常识,成立常识之间的联系,作好迁移的预备。
(2)向学生渗入事物之间彼此联系的辨证唯物主义不美观不美观概念,使学生履历猜想的数学勾当过程,成长合情推理能力。
2、教学放置
(1)出手操作暗示分数
(2)交流分数指导猜想
操作新旧常识的类比进行猜想,鼓舞鼓舞激励学生遵循自己已有的常识经验斗胆猜想,成立常识之间的联系,渗入猜想是一种合情的推理。
(三)出手实践,初步感知
1、指导学生操作已有的进修经验找到与1/2巨细相等的分数,既能验证1/2=2/4=4/8,又能声名与1/2相等的分数有良多。
2、应用所学常识声名9/12与3/4巨细为甚么相等?
(1)学生经由过程自立试探、合作合作的进修编制,自立选择切磋的学具和编制,充实尊敬学生小我的思惟特点。这样设计给学生供给的足够的时刻和空间,激发多种常识和编制的整体构建,培育了学生的立异思惟。
可能会从以下几方面证实:
①折
纸斗劲的编制
②绘图不美观不美观不雅察看的编制
③用分数、小数的关系发现
④应用商不变的纪律发现
⑤其他编制发现
(2)组织交流证实编制和功能,交流时教师实时指导学生针对学生的不合编制给以不合的评价。
(四)指导不美观不美观不雅察看,发现纪律
1、解决的问题
(1)不美观不美观不雅察看发现分数的基赋性质
(2)培育学生不美观不美观不雅察看--试探--抽象--归纳综合的能力。
2、教学放置
(1)提出问题:经由过程验证这两组分数切当相等,那么,它们的分子、分母有甚么改变纪律呢?
(2)全班交流:非论学生的不美观不雅察看算作果是甚么,教师要顺应学生的思惟,针对学生的不美观不美观不雅察看编制,进行指导性评价①不美观不美观不雅察看角度的怪异点②不美观不美观不雅察看事物的有序性③不美观不美观不雅察看事物的周全性等。(寄望不美观不美观不雅察看的顺次从左到右、从右到左)
指导条理一:你发现了1/2和2/4两个数之间的这样的纪律,在这个等式中肆意两个数都有这样的纪律吗?指导学生对1/2和4/8、2/4和4/8每组中两个数之间纪律的不美观不美观不雅察看。
指导条理二:在1/2=2/4=4/8中数之间有这样的纪律,在9/12=6/8=3/4中呢?
指导条理三:用自己的话把你不美观不美观不雅察看到的纪律归纳综合出来。
指导条理四:除有这样的纪律,你还不美观不美观不雅察看到了甚么?(以上寄望两个方面:1。不美观不美观不雅察看顺次2。数的拓展)
(4)指导学生初步总结分数的基赋性质并板书:分数的分子和分母同时乘或除以不异的数,分数的巨细不变。
在这一环节,教师指导学生在不美观不美观不雅察看与分化、试探与思虑的根底上不竭生成新问题,发现并归纳出分数的基赋性质。让学生履历了不美观不美观不雅察看发现、抽象归纳综合的整个过程,阐扬学生进修的自动性。
让学生回覆阿凡提说了甚么话?师生配合构和!
(五)巩固操练,加深理解
1、解决的问题
(1)完美对分数基赋性质的理解。
(2)回忆切磋发现纪律的全过程,再次体验切磋的编制。
(3)对学生自立操练实施分层评价,在操练中培育学生解决问题的能力,成长利意图识,在评价反思中使学生获得成功的体验。
2、教学放置
经由过程质疑反思、步步深切的交流勾当,学生对分数的基赋性质切磋更深切,理解更完美,同时培育了学生的问题意识。
解决现实问题
根底条理题是分数基赋性质的直接应用,提高条理题是培育学生矫捷应用常识解决问题。设计分层操练以求达到巩固常识的下场,连络小学生的春秋特点设计,闪现激情性、、趣味性、条理性、开放性,力争使不合条理的学生有不合的收成,不合的学生经由过程测试评价,都能成立起自年夜。
(六)课堂小结,使命结尾
为了使学生对本节课所学内容有一个整体的感知,我让学生配合回忆本节课研究了哪些问题,经由过程这些问题的解决你有哪些收成?使学生在构和的过程中,进一步体味分数的基赋性质,感应传染常识之间的内在联系,同时增强对迁移推理、猜想验证等数学思惟的熟谙。
应用你今天所学的常识,试试能否为三只小狗找到自己的家游戏,经由过程发问编制找到前两只小狗的家往后紧接着追问剩下的房子是第三只小狗的家吗?
出示思虑题
6/9=4/6
(通分、约分的编制都能获得切确的结论,思虑的过程对后面通分、约分部门进修起到较好的铺垫浸染。)
6、反思课堂教学评价
《新课程尺度》指出评价的首要方针是为了周全数味学生的数学进修过程,鼓舞激励学生的进修和改良教师的教学,应成立评价方针多元化、评价编制多样的评价系统。对数学进修的评价要关注学生进修的功能,更要关注他们进修的过程;要关注学生数学进修的功能,更要关注他们进修的过程;要关注学生数学进修的水平,更要关注他们在数学勾傍边所默示出来的激情立场,辅佐学生熟谙自我,成立抉择抉择信念。
激情是课堂教学的魂灵,是课堂教学的催化剂,是师生激情的黏合剂,我们要长于用教师的激情激起学生进修的热忱,是课堂教学布满生命活力的关头要素。是以,我正视“过程与功能”相连络;正视“出手操作与动脑思虑”相连络,“奠基根底、获得编制与激情体验”相连络,全力经由过程多元多样的评价,鼓舞激励学生的进修和改良教学,成立学生进修的自年夜。
以上是我对分数的基赋性质这节课的声名,经由过程设计给我以良多新的思虑,很不成熟,但我仍然深切地感应传染到,在新课程理念的指导下,课堂的教学编制、进修编制、评价编制都在发生着巨除夜的改变。恳请在坐的专家攻讦匡正,感谢感动!
《分数的基赋性质》说课稿10
列位评委、教员:
你们好!我是尚市镇中心小学的王方。我说课的课题是《分数的基赋性质》,接下来我将从说学生、说教材、说教法学法、说教学法度楷模、说板书设计、说反思等几个方面来进行说课。
1、说学生
学生在进修本内容之前已理解了分数的意义,了了了分数与除法之间的关系、商不变的性质等常识,这些为本课进修作了铺垫。而五年级的学生已具有必定的分化息争决问题的能力,能在教师的指导下完成“质疑—试探—释疑—操作”这一完全的进修过程。
2、说教材
1、教材分化:
《分数的基赋性质》是人教版小学数学五年级下册第四单元中的内容,在小学数学中起着继往开来的浸染。它既与整数除法商不变的性质有着内在联系,也是后面进修约分、通分、分数计较的根底,在全数门数教学中也据有很是首要的地位。
2、教学方针:
连络对教材的分化,我必定了以下教学方针:
常识与手艺方针:
理解和掌控分数的基赋性质,能应用分数的基赋性质改变分数的分母与分子,而使分数的巨细不变。
过程与编制方针:
让学生履历分数基赋性质的发现、归纳过程,培育学生小组合作的意识和能力,渗入迁移的教学思惟。
激情立场与价值不美不美观方针:
让学生在自动试探新常识的过程中获得成功的体验,体味分数的基赋性质在糊口中的操作。
3、教学重点和难点:
重点:理解和掌控分数的基赋性质,应用分数的基赋性质解决现实问题。
难点:学生经由过程猜想和出手验证,抽象归纳综合出分数的基赋性质。
4、教学预备:
学生预备三张外形巨细一样的纸片、彩笔,教员预备课件、分数卡片。
3、说教法学法
教法:
本着 “以学定教”的思惟,我以自立切磋为主线,以成长立异为年夜旨,首要采纳创设情境、指导切磋、指导发现、组织构和、组织操练等教法,让学生全程、周全、精心肠介入到每个教学环节中。
学法:
新课标指出:有用的数学进修勾当,不能纯挚摹拟与记忆,出手实践、自立试探与合作交流是学生进修数学的首要编制。基于这样的理念,本课学生的学法首要有:自立发现法、操作体验法、合作交流法、自学考试考试法等。当然,因为学生思惟编制的不合,教师要尊敬学生的选择,准予学生用自己快乐喜爱的编制进修数学。
4、说教学过程
为实现教学方针,我将本课的教学法度楷模设计了以下四个环节:
(一)创设情境,激起猜想
首先我为学生带来一个《猴王分饼》的故事:猴王做了三个巨细一样的饼,它先把第一个饼平均切成两块,分给猴1一块;又把第二个饼平均切成四块,分给猴2两块;接着又把第三个饼平均切成八块,分给猴3四块。听完故事,我问道:“同窗们,哪只小猴分的饼最多?”来激起学生的猜想。
设计意图:“疑是思之始,学之端”。这样设计,旨在把古板的数学常识贯串于学生快乐喜爱的故工作境中。激起学生的进修欢兴奋乐喜爱,激起他们进修的欲望。
(二)自立切磋,寻觅纪律
勾当一:出手实践,验证猜想
让学活跃手折一折(将每张纸分袂平均折成两份四份和八份)、涂一涂(用笔将其中的一份两份和四份涂上色)、比一比(斗劲涂色部门的巨细),发现三只小猴分的饼是一样多的。同时获得三个相等的分数: = =
勾当二:不美观不美观不雅察看斗劲,发现纪律
指导学生带着问题不美观不美观不雅察看这三个分数,并在小组内睁开构和:这三个分数的分子和分母都不不异,他们的巨细却相等,你们能找出它们的改变纪律吗?
勾当三:对比归纳,提醒纪律
1、应用课件指导学生分袂从左往右看,从右往左看:分数的分子和分母是若何改变的.?
2、小组合作,归纳出分数的基赋性质。
3、自学教材,对比分化,并举例声名,着重理解为甚么要“0除外”?
勾当四:操作巩固,体味纪律
我以学生为主角,把全班学生平均分成了两除夜组,请其中一组起立。站起来的学生人数占全班人数的几分之几?指导学生用不合的分数来暗示。
设计意图:经由过程四组勾当,使学生育成自立进修的习惯和分化问题的能力。在勾傍边,经由过程多种评价编制,实时必然并促进学生的进修。
(三)多层操练,巩固深化
1、例2:让学生应用分数的基赋性质把 和 化成分母是12而巨细不变的分数。
2、了了《猴王分饼》的事理,并拓展迟误:假定小山公要五块、六块、十块……又该若何分呢?
3、考虑到学生素质的分歧,我设计了四组分层闯关操练。
我的设计意图是:让学生应用所学的常识解决现实问题,实现预定的方针。还能使学有余力的学生有所提高,从而达到拔尖和减负的方针。
(四)课堂小结,加深理解
让学生畅谈收成,并用分数来暗示本节课所体验到的收成与欢愉。这样设计,不成是对自己在课堂上常识获得的一个回首回头回忆回头回忆,同时也评价了自己在课堂上的默示,对教师的教学步履与课堂的教学下场也给出了评价。
5、说板书设计:
板书设计凸起了重点,有助于学生归纳、清理常识,组成常识汇集。
6、说反思
反思本节课的教学,我认为教学设计闪现了“趣”、“实”、“活”三个特点。故事引入,激起了学生的进修欢兴奋乐喜爱;经由过程折、涂、比等多种勾当,为学生搭建了一个自立切磋的勾当平台;课上得富有实效,学生体验到了成功的乐趣。
列位率领、教员们,我的说课到此竣事,感谢感动巨匠!
《分数的基赋性质》说课稿11
1、说教材分化
《分数的基赋性质》是义务教育课程尺度考试考试教材人教版五年级下册第五单元的一个首要内容。该教学内容是以分数的意义、分数与除法的关系、整数除法中商不变的纪律这些常识为根底的。分数的基赋性质是成立在分数巨细相等这一概念根底之上的。而两个分数的巨细相等,其实不意味着两个分数的分子、分母分袂不异。分数的基赋性质又是约分和通分的根底,而约分和通分则是分数四则同化运算的首要根底,是以,理解分数的基赋性质显得尤其首要。
2、说教学方针
遵循教材分化拟定以下的教学方针:
常识与手艺:
1、使让学心理解分数的基赋性质,并会操作分数的基赋性质把不合分母的分数化成分母不异而巨细不变的分数。
2、培育学生不美观不美观不雅察看、分化和抽象归纳综合能力。
过程与编制:
1、让学生履历分数基赋性质的切磋过程。
2、经由过程指导启发,辅佐学生学会操作分数的基赋性质把不合分母的分数化成分母不异而巨细不变的分数的编制。
激情立场与价值不美不美观:
1、体验合作切磋的乐趣,培育学生的团结协作精神。
2、渗入“事物间彼此联系”的辩证唯物主义不美观不美观概念。
教学重点:理解分数基赋性质。
教学难点:归纳分数的基赋性质,并应用性质转化分数。
教具教学预备:
多媒体课件,小棒、纸条、圆形纸片
3、说教学策略
为了营建学生在教学勾傍边的自力、自立的进修空间,让学生成为课堂的主人,本着“将课堂还给学生,让课堂焕发生命活力”的指导思惟,遵循学生的'认知纪律,我采纳以下教学策略:
1、采纳了创设情境、指导切磋、指导自学、组织构和、组织操练等教学策略。
2、现实操作:指导学生亲主出手折一折,涂一涂,比一比,从这些实践勾傍边加深学生对分数基赋性质的理解,促进学生的感性熟谙逐步理性化。
3、指导归纳综合:先让学生充实感知,发现纪律,然后斗劲归纳,最后归纳综合出分数的基赋性质,从而使学生的思惟从形象思惟过渡到抽象思惟。
4、新课标指出:有用的数学进修勾当,不能纯挚摹拟与记忆。出手实践、自立试探与合作交流是本节课学生进修的首要编制。
4、说教学流程
连络五年级学生的理解能力和春秋特点,我将本课的教学设计为六个环节。
(一)、创设情境,激起猜想
首先我为学生带来一个《猴王分饼》的故事。
猴山上的小山公最快乐喜爱吃猴王做的饼了,有一天,猴王做了三块巨细一样的饼分给小山公吃。它先把第一块饼平均切成4块,分给猴1一块;猴2见了说:“太少了,我要2块。”猴王又把第二块饼平均切成8块,分给猴2两块;猴3更贪,它抢着说:“我要3块,我要3块……”猴王又把第三块饼平均切成12块,分给猴3两。小伴侣,你知道哪只山公分得的饼多吗?
“同窗们,你们认为猴王分得公允吗?”激起学生的猜想。
(这样就激起了学生的进修欢兴奋乐喜爱,为后面的进修做好了铺垫。)
(二)自立试探,寻觅纪律
(下面这个环节是课堂教学的中心环节,新课标强调,要让学生在实践勾傍边进行试探性的进修。遵循这一理念,我设计了下面的勾当。让学生在体验中进修,在进修中体验。)
1、小组合作 验证猜想
这只是巨匠的猜想,事实哪只山公分得的饼多呢?亲成分一分,验证你们的猜想。
学生操作验证---集体陈述请示交流----揭示功能
2、既然三只小猴分得的饼一样多,那么暗示他们分得饼的三个分数是甚么关系呢?这三个分数甚么变了,甚么没变?
学生得出:这三个分数是相等关系,分数的分子和分母改变了,但分数的巨细不变。
3、猴王把三张巨细一样的饼分给小猴一部门后,剩下的部门巨细相等吗?经由过程不美观不美观不雅察看演示得出3/4=6/8=9/12
4、我们班有64名同窗,分成了四组,每组16人。那么,第1、二组学生的人数占全班学生人数的几分之几?指导学生用不合的分数暗示,然后得出1/2=2/4=32/64
(三)斗劲归纳 揭露纪律
1、出示思虑题
1/4=2/8=3/12
斗劲每组分数的分子和分母:
从左往右看,是遵循甚么纪律改变的?
从右往左看,又是遵循甚么纪律改变的?
经由过程不美观不美观不雅察看,你发现了甚么?
让学生带着上面的思虑题,先自力思虑,后小组构和、交流。
2、集体交流,归纳性质。
3、师生配合总结纪律,找出性质中的关头词,然后齐读,寄望关头的字词要重读。
4、此刻,巨匠知道猴王是应用甚么性质分饼了吗?
5、沟通分数的基赋性质与商不变性质之间的联系。指导学生操作分数和除法的关系,和整数除法中商不变的性质,声名分数的基赋性质。
(这样的设计就让学生感应传染到了数学常识的内在联系,同时渗入“事物之间是彼此联系”的辨证唯物主义不美观不美观概念)
(四)自学例2
1、自学例2。
2/3 = 2×()/3×4 =()/12
10/24 = 10 ( )/24 ( ) = ( )/12
2、揭示交流:重点让学生说说分母、分子是若何改变的?遵循甚么?
这样设计的方针是学生学会的教员不包揽,从而培育了学生的自学能力。
(五)多层操练 巩固深化
1、填上合适的数,说说你填写的遵循
1/3 =()/6 10/15 =()/3 1/4 = 5/()
我想经由过程这道题让学生进一步加深对分数基赋性质的组成过程的理解,从而培育学生的措辞表达能力。
2、说一说下面各式应用分数的基赋性质是不是切确
5/24=5×2/24÷2=10/12 ( )
4/9=4÷2/9÷3=2/3 ( )
13/18=13+2/18+2=15/20 ( )
在这我设计了同窗们在泛泛泛泛做题中等闲同化的问题,提醒同窗们尔后要寄望。
3、想想:(选择你快乐喜爱的一道题来做)
与1/2相等的分数有若干良多若干好多个?想像一下把手中的正方形的纸无限地等分下去,可获得若干良多若干好多个与1/2相等的分数?
9/24和20/32哪个数除夜一些,你能讲出剖断的按照吗?
在这我让同窗们充实阐扬想象,矫捷应用分数的基赋性质。为后面进修约分和通分的常识奠基根底。
(六)本课小结
同窗们,经由过程这节课,你有哪些收成?
学生在交流收成的过程中,培育学生的常识归纳综合能力。
5、说教学评价
1、教学过程中采纳自我、小组、集体等多种评价编制,激倡议学生交流的欢兴奋乐喜爱。
2、多媒体课件的操作,创设活跃的教学情境。
3、学生在发现、体验、合作、交流、归纳、总结中,自立介入全数进修过程,营建自力、自立的进修空间,学生成为课堂的主人。
《分数的基赋性质》说课稿12
今天我说课的内容是《分数的基赋性质》。下面我将从“说教学理念、说教材、说教法、说学法、说教学法度楷模、说板书设计”六个方面来授课。
1、本课的教学理念有:
1、以学生成长为本,出力强化主体意识。
2、从学生已有的认知成长水安然舒适常识经验解缆,为学生供给充实从事数学勾当的机缘,变“学数学”为“做数学”。
3、致力于改变学生的进修编制,关注过程,让学生履历常识的组成过程,感应传染验证、转化等数学思惟编制。
2、说教材
《分数的基赋性质》一课是义务教材六年制数学第十册第四单元的一个内容。这部内容的进修是在学生进修了分数的意义、分数与除法的关系、商不变性质等常识的根底长进行教学的。它是进一步进修约分、通分的根底。
遵循教材内容和学生的熟谙知纪律,将本课的教学方针拟定以下:
1、常识与手艺:理解和掌控分数的基赋性质,知道分数基赋性质与整数除法中商不变性质的关系。能应用分数的基赋性质把一个分数化成分母不异而巨细相等的分数;培育学生不美观不美观不雅察看、斗劲及出手实践的能力,进一步成长学生的思惟。
2、激情、立场:激起学生积极自动的激情状况,养成寄望聆听的习惯。
本课的教学重点和难点:理解和掌控分数的基赋性质,会应用分数的基赋性质。
3、说教法
成立以“以学生成长为本”、“以学定教”、“教为学处事”的思惟,是以在教学中,我采纳指导自学、合作试探相连络法,让学会应用分数的基赋性质把一个分数化成分母不合但巨细相等的分数,有用地提高了教学效力。在常识的巩固阶段,我还采纳组织操练法,当然以上这些教法其实不是孤立存在的,本着“一法为主,多法为辅”的思惟,我将多种教法进行优化组合,以达到促进学生进修编制的改变,实现教学方针的方针。
4、说学法
1、学生在应用分数的基赋性质时,指导学生采纳自立发现法、操作体验法,学生在折纸上画出响应的暗影部门后,必定会对那三个图形进行不美观不美观不雅察看和斗劲,从中有所发现。往后教员经由过程启发学生应用分数的基赋性质,证实那三个分数巨细相等,让考试考试中发现,在实践中体验。从而加深学生对分数基赋性质的理解。
2、在进修例题的过程中教师先采纳启发法,再采纳自自学考试考试法,自力自登时进修将分数化成分母不合但巨细不异的分数,并考试考试完成做一做,达到考验自学的方针`。
5、说教学法度楷模
1、设疑激趣,引入新课
教育学家布朗曾提出:“情境经由过程步履来合成常识,欢兴奋乐喜爱最好的教员”。
首先我经由过程多媒体为学生带来一个僧人分饼的故事。畴前有座山,山里有座庙,庙里有个老僧人和三个小僧人。小僧人最快乐喜爱吃老僧人烙的饼了。有一天,老僧人做了三块一样巨细的饼,想给小僧人吃,还没给,小僧人就叫开了。矮僧人说:“我要一块!”高僧人说:“我要两块!”胖僧人说:“我不要多,只要四块!”老僧人听了二话没说,马上把一块饼平均分成四块,取其中的一块给了矮僧人;把第二块饼平均分成八块,取其中的两块给了高僧人;把第三块饼平均分成十六块,取其中的四块给了胖僧人,一一知足了他们的要求。同窗们,你知道哪个僧人吃的多吗?
这样经由过程故事激起学生的进修欢兴奋乐喜爱,为后面的进修做好了铺垫。
2、自立试探,进修新知
新课标强调,要让学生在实践勾傍边进行试探性的进修。遵循这一理念,我设计了下面的勾当。让学生在体验中进修,在进修中体验。
1、小组合作,让学生用一张纸庖代饼,试着分分看。履历验证猜想——学生操作验证——集体陈述请示交流——揭示功能四个过程。
2、指导发问:既然三个僧人分得的饼一样多,那么暗示他们分得饼的三个分数甚么关系呢?这三个分数甚么变了,甚么没变?
学生得出:这三个分数相等关系,分数的分子和分母改变了,但分数的巨细不变。
3、指导学生从左到右不美观不美观不雅察看等式,想一下,这三个分数的分子、分母若何改变才保证了分数的巨细不变的?
师:谁能用一句话把这个改变纪律论说出来呢?
生:从左往右看,分数的分子、分母同时扩除夜了,也就分子分母都乘了一个不异的数,但三个分数的巨细没有变。
师:你们不美观不美观不雅察看的真细心!请巨匠给点掌声好吗?(出示课件)教员这样论说的“分数的分子、分母都乘上统一个数,分数巨细不变”。
4、让学生从右到左不美观不美观不雅察看等式分子和分母又若何改变的呢?谁能用一句话把这个改变纪律论说出来?小组构和后,一样的编制让学生小结纪律,并请同窗给以评价,让学生抒发自己的不雅概念,闪现课堂教学的平易近主化。然后教师在课件中填补“或除以”四个字,小结分数的基赋性质。
5、接着让学生四人小组一路做游戏,应用分数的基赋性质,由一名同窗说一个分数,然后其他同窗顺次说出相等的分数,不能几回再三,看看谁又快又准。
竣事游戏,教师发问,此刻我们知道分数的分子、分母都乘上或除以统一个数,分数巨细不变。刚刚巨匠做游戏,有没有人操作了0呢?巨匠想想0可以不成以呢?让学生回覆:分数的分母不能为零。我在课件中填上“零除外”三个红色的字,以便激发学生的寄望。
6、教师指导:“学了分数的基赋性质到底有甚么用呢?教员奉告你们,遵安分数的基赋性质,我们就可以变魔术一样,把一个分数酿成多个跟它巨细一样,分子分母却不合的新分数。下面就让我们来变个魔术。”接着让学生操练课本例题2,两名学生上台演板,其他学生点评。学生自己小结编制。
教育家波利亚指出:进修任何新知的最好道路由学生自己去发现,因为这类发现理解最深,也最等闲掌控内在纪律和联系。教学中给学生供给自立切磋、合作交流的六合,积极其学生创设自动进修的机缘,供给考试考试试探的空间,学生能自动从不合方面,不合角度思虑问题,追求解决道路。同时还培育学生的合作意识,使不合的设法获得交流,实现常识的进修、互补。
3、分层操练,巩固深化
只有经由过程响应的操练,才能更好地巩固新知,组成手艺。在操练的放置上我正视条理性,渗入多样性,让学心理解用所学的常识可以解决不合类型的问题,进一步提高解题能力。
1、涂一涂操练14,第1、7题。
因为要给空格上色,所以谜底其实不独一,经由过程这两题不单能让学生回忆切磋发现纪律的过程,充实闪现了“玩中学,学中玩”的新课程理念。
2、说一说完成操练14,第8题
我想经由过程这道题让学生进一步加深对分数基赋性质的组成过程的理解,从而培育学生的措辞表达能力。
3、想想:第5、9、10题(选择一题做为功课)
在这我让同窗们充实阐扬想象,矫捷应用分数的基赋性质。为后面进修约分和通分的常识奠基根底。
4、畅谈收成,小结全课
让学生自己总结所学内容,畅谈收成和感应传染,培育学生的归纳综合能力和措辞表达能力。
整节课中,我力争做到始终指导学生自动不美观不美观不雅察看、充实体验、出手实践、积极立异,全力做到既正视学生的自力思虑,又正视合作交流,既正视常识与能力的共进,又关注激情和体验的提高,让学生周全、深切地舆解分数的基赋性质。
《分数的基赋性质》说课稿13
此日我说课的资料是《分数的基赋性质》。下面我将从“说教学理念、说教材、说教法、说学法、说教学过程”五个方面来授课。
1、本课的教学理念有:
1、以学生成长为本,出力强化主体意识。
2、从学生已有的认知成长水安然舒适常识经验解缆,为学生带给充实从事数学勾当的机缘,变“学数学”为“做数学”。
3、致力于改变学生的进修编制,关注过程,让学生履历常识的组成过程,感应传染验证、转化等数学思惟编制。
2、说教材
分数的基赋性质是九年义务教育小学数学第十册第四单元的资料,这一部门教学资料是在学生进修了分数的益处、分数与除法的关系、商不变的纪律等常识的根底长进行教学的。在分数教学中据有首要的地位,它是约分、通分的根底。遵循教材资料和学生的熟谙知纪律,将本课的教学方针拟定以下:
1、常识与手艺:理解和掌控分数的基赋性质,除夜白分数基赋性质与整数除法中商不变纪律的关系。能应用分数的基赋性质把一个分数化成分母不异而巨细相等的分数;培育学生不美观不美观不雅察看、分化、斗劲、抉择及出手实践的潜力,进一步拓展学生的思惟。
2、激情、立场:激起学生专心自动进修的激情状况,养成寄望聆听、不美观不美观不雅察看事物的进修习惯。
3、教学重点和难点:理解和掌控分数的基赋性质的概念,应用分数的基赋性质,把一个分数化成指定分母而巨细不变的分数。
3、说教法
“将课堂还给学生,让课堂焕发生命活力”,为营建学生在教学勾傍边的自力、自立的进修空间,让学生成为课堂的主人,本着这样的指导思惟,遵循概念教学的特点,连络教学特点,和学生的认知纪律,我将采纳的教学编制首要有:
1、直不美不美观演示法
先让学生充实感知,然后斗劲归纳,最后归纳综合出分数的基赋性质,从而使学生的思惟从形象思惟过度到抽象思惟。
2、现实操作法
指导学生亲自动一动、折一折,画一画,比一比,多这些实践勾傍边加深学生对分数基赋性质的理解,促使学生的感性熟谙逐步理性化。
3、启发式教学法
应用常识迁移纪律组织教学,层层深切促使学生在专心的思惟
4.成立以“以学生成长为本”、“以学定教”、“教为学处事”的思惟,是以在教学中,我采纳指导自学、合作试探相连络法,让学会应用分数的基赋性质把一个分数化成分母不合但巨细相等的分数,有用地提高了教学效力。在常识的巩固阶段,我还采纳分层操练法,当然以上这些教法其实不是孤立存在的,本着“一法为主,多法为辅”的思惟,我将多种教法进行优化组合,以达到促进学生进修编制的改变,实现教学方针的方针
4、说学法
1、学生在应用分数的基赋性质时,指导学生采纳自立发现法、操作体验法,学生在折纸上画出响应的暗影部门后,必定会对那三个图形进行不美观不美观不雅察看和斗劲,从中有所发现。往后教员透过启发学生应用分数的基赋性质,证实那三个分数巨细相等,让考试考试中发现,在实践中体验。从而加深学生对分数基赋性质的理解。
2、在进修例题的过程中教师先采纳启发法,再采纳自自学考试考试法,自力自登时进修将分数化成分母不合但巨细不异的分数,并考试考试完成做一做,达到考验自学的方针`。
5、说教学法度楷模
按照新的教学理念及学生的认知特点,将本课的教学模式拟定为:
第1、以故事导入,培育学生的进修欢兴奋乐喜爱。在进行备课时,我感应传染假定遵循教材的放置来导入,显得有些平平,也不等闲激起学生的进修欢兴奋乐喜爱。为此,我王除夜爷分地的故事,让王除夜爷给三个儿子分地,分得的功能看似不公,实则不异。并让学生作为裁判来评一评,这样一来,学生进修数学的欢兴奋乐喜爱必定提高,进修的专心性也会空前高涨。同时,我又把这一悬念且则先放一放,等学心理解并掌控了分数的基赋性质后,学生就会恍然除夜捂。原本,三个儿子分到的地现实上是一样多的,只可是是平均分的分数纷歧样的,其中暗示的份数也纷歧样,但巨细却是相等的,谁也没有吃亏。这样的设计,不单仅使教学结构加倍完全,前后呼应,同时也提高了学心理解和操作分数的基赋性质来解决现实问题的潜力。
第2、阐扬公共优势,培育学生的合作潜力。为了有用解决教学中“少数学生争台面,除夜都学生做陪客”的现象,我在教学中也引入了小组合作进修的形式,提高学生进修的自动性,使学生在获得数学常识的同时,组成精采的人际关系,促进学生的周全成长。为此,在不美观不美观不雅察看相等分数的改变纪律时,我让学生充拭魅睁开构和。巨匠你一言我一语,一点一滴,逐步发现从左往右,分数的分子分母分袂顺次乘2、乘4、乘8,而分数的巨细不变的改变纪律。从而逐步地引出了分数的基赋性质。
第3、精心设计操练题,提高学生解题潜力。数学教学,做问题问题是其中最首要的一个方面。但传统教学教师经常进行所谓的题海战争,让学生几回再三做、几回再三做,这样不单仅做累了学生同时也做怕了学生,消磨了学生进修的专心性。所以若何使学生愿做、乐做,同时又能达到教学方针,提高学生的数学综合潜力,是摆在我们面前的一个首要课题。为此,在教学《分数的基赋性质》时,我也精心设计操练题。首先是题型改变丰硕。操练中,我放置了一些抉择题、口答题。题型的丰硕不单仅提高了学生进修的欢兴奋乐喜爱,也使学生更好地舆解和操作分数的基赋性质来解决现实问题的潜力。
总之,进修无绝顶,在尔后的教学中,我会加倍全力地研究教材、设计教法,力争使每节数学课都能达到理想的教学下场。
《分数的基赋性质》说课稿14
1、说教材
《分数的基赋性质》是九年义务教育六年制小学数学第十册第五单元的一个首要内容。该教学内容是以分数的意义、分数与除法的关系和整数除法中商不变的纪律这些常识为根底的。原教材先经由过程直不美不美观使学生体味1/2、2/4、3/6 4/8四个分数的分子、分母当然不合,可是分数的巨细是相等的。接着进一步研究这四个分数的分子和分母,思虑它们是遵循甚么纪律改变的。最后归纳出分数的基赋性质。这样放置教学内容,学生的主体地位不能获得充实闪现,晦气于培育学生的问题意识。为此,我筹算经由过程"折、画、想、问、用"五个环节对教学内容作以下措置。
1.画--让学生用色笔在长方形纸条上分袂涂出它们的一半,并用分数来暗示。
2.想--1/2、2/4、3/6 、4/8这些分数有甚么关系?你还能说出和"1/2"巨细相等的其他分数吧?你还能说出和"2/3"巨细相等的分数吧?
3.问—从"1/2=2/4=3/6=4/8"中,你发现了甚么?
4.用--用已学过的"分数的基赋性质"解决有关的数学问题。这样放置教学有以下几点益处:
(1)有益于常识的迁移。
让学生经由过程出手折、涂,再用分数暗示,这样既辅佐学生复习了分数的意义,又为进修新常识作了预备。
(2)能阐扬学生进修的自动性。
经由过程学生找和"1/2"巨细相等的分数,和和"2/3"巨细相等的分数,阐扬学生进修的自动性,闪现自立进修的精神。
(3)提高了学生的进修能力。
经由过程交流,培育学生勇于揭晓自己的定见,积极思虑问题,积极切磋问题,培育学生归纳综合问题的能力息争决问题的能力。
2、说教学方针
以上各个教学环节的设计闪现以下几点教学方针:
1.常识手艺性方针:让学生亲自履历"分数基赋性质"抽象归纳综合的全过程,切确理解和掌控分数的基赋性质,使学生能应用分数的基赋性质解决有关的数学问题。
2.成长性方针:培育学生不美观不美观不雅察看--试探--抽象--归纳综合的能力和迁移类推能力,渗入事物是彼此联系、成长改变的辩证唯物主义不美观不美观概念,培育学生的数学意识、问题意识、合作意识和利意图识。
3.立异性方针:让学生在进修的过程中发现问题、解决问题,提高学生试探询题的能力和研究问题的能力。
3、说教法
本节课起筹算采纳"创设情境,复习迁移--设疑激思,获得新知--深化概念,实时反馈"的教学模式进行教学。
1.创设情境,复习迁移。
为了阐扬学生进修的自动性,使旧常识起到正向迁移的浸染,最先创设了出手操作的.情境:课最早发给每位学生四张一样巨细的长方形纸条,让学生折一折。把第一张纸条对折(也就是把这张纸条平均分成2份),把第二张纸条对折再对折(也就是把纸条平均分成4份),再把第三张3次对折(也就是把纸条平均分成8份)。接着,让学生画一画,用彩笔在等分后的纸条上分袂涂出它们的一半。奉告学生,假定把每张纸条都看作单元"1",问学生:你能把涂色的部门用分数暗示吗? 这一情境的设置,主若是让学生在出手操作过程中不单复习了分数的意义,为下面导入新常识作好铺垫、迁移。而且在教学一最早,就可以抓住学生爱出手和直不美不美观思惟的特点,激活课堂空气,营建精采的进修初步。
2.设疑激思,获得新知。
"疑是思之始,学之端"。学,就是进修问题,学若何问问题。为此,我在上面教学的基上,指导学生一一构和以下问题:
(1)1/2、2/4、3/6、 4/8这些分数有甚么关系?
(学生会嗣魅这四个分数的巨细相等。)
(2)你能说出与"1/2"巨细相等的其他分数吗?你还能说出与"2/3"巨细相等的分数吗?
(假定学生写错或写不出,待得出分数基赋性质后再写)
(3)从"1/2=2/4=3/6=4/8"中,你发现了甚么?
(让学生分组构和,充实揭晓自己的定见,经由归纳,最后得出:分数的分子和分母同时乘以或除以不异的数,分数的巨细不变。并把这句话显示出来。)
(4)你对上面这句话感应传染有甚么问题吗?
(学生可能会提出地"不异的数"中"0"必需除外。假定学生提出不出,就由教师提出问题:不异的数是不是是任何数都行?为甚么?)
最后,让学生完全地归纳综合出分数的基赋性质。(教员揭露课题)
这样教有益于培育学生的问题意识,师生激情通顺贯通、协调,学生积极介入,思惟活跃,进修自动,为学生创设一个精采的进修空气。
3.深化概念,实时反馈。
为了加深学生对分数基赋性质的理解,激起学生的进修欢兴奋乐喜爱,起设计了以下操练:
1.下面各式对吗?为甚么?(让学生用手势暗示对错)
(1)3/4=6/8 (2)3/8=12/2 (3)3/10=1/5
2.在()里填上合适的数。
()/6=()/36=8/12=2/()=()/24
3.把2/3和10/24化成分线是12而巨细不变的分数。
4.把下面巨细相等的两个分数用线毗连起来。
4/5 1/6 4/9 4/6 12/16
3/4 2/3 20/25 6/36 8/18
《分数的基赋性质》说课稿15
1、说教学内容的立异措置
《分数的基赋性质》是九年义务教育六年制小学数学第十册第四单元的一个首要内容。该教学内容是以分数的意义、分数与除法的关系和整数除法中商不变的纪律这些常识为根底的。原教材先经由过程直不美不美观使学生体味1/2、2/4、3/6三个分数的分子、分母当然不合,可是分数的巨细是相等的。接着进一步研究这三个分数的分子和分母,思虑它们是遵循甚么纪律改变的。最后归纳出分数的基赋性质。这样放置教学内容,学生的主体地位不能获得充实闪现,晦气于培育学生的问题意识。为此,我筹算经由过程"折、画、想、问、用"五个环节对教学内容作以下措置。
1.折--用三张一样巨细的长方形纸条分袂折出二等分、四等、八等分。
2.画--让学生用色笔在长方形纸条上分袂涂出它们的一半,并用分数来暗示。
3.想--1/2、2/4、4/8这些分数有甚么关系?你还能说出和"1/2"巨细相等的其他分数吧?你还能说出和"2/3"巨细相等的分数吧?
4.问--ww"1/2=2/4=/4/8"中,你发现甚么?
5.用--用已学过的"分数的基赋性质"解决有关的数学问题。这样放置教学有以下几点益处:
(1)有益于常识的.迁移。
让学生经由过程出手折、涂,再用分数暗示,这样既辅佐学生复习了分数的意义,又为进修新常识作了预备。
(2)能阐扬学生进修的自动性。
经由过程学生找和"1/2"巨细相等的分数,和和"2/3"巨细相等的分数,阐扬学生进修的自动性,闪现自立进修的精神。
(3)提高了学生的进修能力。
经由过程交流,培育学生勇于揭晓自己的定见,积极思虑问题,积极密查题,培育学生归纳综合问题的能力息争决问题的能力。
2、说教学模式
本节课起筹算采纳"创设情境,复习迁移--设疑激思,获得新知--深化概念,实时反馈"的教学模式进行教学。
1.创设情境,复习迁移。
为了阐扬学生进修的自动性,使旧常识起到正向迁移的浸染,最先创设了出手操作的情境:起发给每位学生三张一样巨细的长方形纸条,让学生折一折。把第一张纸条对折(也就是把这张纸条平均分成2份),把第二张纸条对折再对折(也就是把纸条平均分成4份),再把第三张3次对折(也就是把纸条平均分成8份)。接着,让学生画一画,用彩笔在等分后的纸条上分袂涂出它们的一半。奉告学生,假定把每张纸条都看作单元"1",问学生:你能把涂色的部门用分数暗示吗?(电脑显示三张涂色的纸条,学生分袂用分数1/2、2/4、4/8暗示。)
这一情境的设置,主若是让学生在出手操作过程中不单复习了分数的意义,为下面导入新常识作好铺垫、迁移。而且在教学一最早,就可以抓住学生爱出手和直不美不美观思惟的特点,激活课堂空气,营建精采的进修初步。
2.设疑激思,获得新知。
"疑是思之始,学之端"。学,就是进修问题,学若何问问题。为此,我在上面教学的基上,指导学生一一构和以下问题:
(1)1/2、2/4、4/8这些分数有甚么关系?
(学生会嗣魅这三个分数的巨细相等。)
(2)你能说出与"1/2"巨细相等的其他分数吗?你还能说出与"2/3"巨细相等的分数吗?
(假定学生写错或写不出,待得出分数基赋性质后再写)
(3)从"1/2=2/4=4/8"中,你发现了甚么?
(让学生分组构和,充实揭晓自己的定见,经由归纳,最后得出:分数的分子和分母同时乘以或除以不异的数,分数的巨细不变。并把这句话显示出来。)
(4)你对上面这句话感应传染有甚么问题吗?
(学生可能会提出地"不异的数"中"0"必需除外。假定学生提出不出,就由教师提出问题:不异的数是不是是任何数都行?为甚么?)
最后,让学生完全地归纳综合出分数的基赋性质。(教员揭露课题)
这样教有益于培育学生的问题意识,师生激情通顺贯通、协调,学生积极介入,思惟活跃,进修自动,为学生创设一个精采的进修空气。
3.深化概念,实时反馈。
为了加深学生对分数基赋性质的理解,激起学生的进修欢兴奋乐喜爱,起设计了以下操练:
1.下面各式对吗?为甚么?(让学生用手势暗示对错)
(1)3/4=6/8(2)3/8=12/2(3)3/10=1/5
2.在()里填上合适的数。
()/6=()/36=8/12=2/()=()/24
3.把2/3和10/24化成分线是12而巨细不变的分数。
4.把下面巨细相等的两个分数用线毗连起来。
4/51/64/94/612/16
3/42/320/256/368/18
3、说教学方针
以上各个教学环节的设计闪现以下几点教学方针:
1.常识手艺性方针:让学生亲自履历"分数基赋性质"抽象归纳综合的全过程,切确理解和掌控分数的基赋性质,使学生能应用分数的基赋性质解决有关的数学问题。
2.成长性方针:培育学生不美观不美观不雅察看--试探--抽象--归纳综合的能力和迁移类推能力,渗入事物是彼此联系、成长改变的辩证唯物主义不美观不美观概念,培育学生的数学意识、问题意识、合作意识和利意图识。
3.立异性方针:让学生在进修的过程中发现问题、解决问题,提高学生试探询题的能力和研究问题的能力。
【《分数的基赋性质》说课稿】相关文章:
《分数的基赋性质》说课稿06-09
分数的基赋性质说课稿04-28
分数基赋性质说课稿07-06
分数的基赋性质说课稿范文04-18
分数的基赋性质说课稿15篇07-27
分数的基赋性质说课稿(15篇)11-04
《分数的基赋性质》说课稿15篇11-10
分数的基赋性质说课稿(通用15篇)01-12
《分数的基赋性质》说课稿(通用15篇)01-06